
05.02.2015

RIOT's Preliminary
Network Stack Design

Martine Lenders
Hauke Petersen

RIOT Preliminary Network Stack Design – 05.02.2015 2

Contents
● Motivation
● Overall Architecture
● Packet Buffer
● Netreg
● Netdev
● Netapi
● Examples / Use Cases
● Open Topics

RIOT Preliminary Network Stack Design – 05.02.2015 3

Motivation
● Problems with the current implementation:

● Too big (buffers everywhere, multiple reimplementations of the same stuff)
● Too inconsistant (every protocol has its own set of APIs)
● Too monolithic

● originally designed for just 6LoWPAN over cc110x
● IEEE 802.15.4 support patched in with advent of at85rf231/cc2420 support
● every new device type requires heavy patching in several layers
● IPv6 without 6LoWPAN currently impossible

● Transceiver API does not scale
● (for every new device new #ifdef branch >1000 loc for simple tasks)⇒

● Context (thread) of function calls not always clear
● (ipv6_send_data() called from RPL, TCP/UDP, and Ipv6 thread itself)

RIOT Preliminary Network Stack Design – 05.02.2015 4

Desing Principles

1) Modularity and extensibilty

2) Slim and well-defined interfaces

3) Memory efficiency (RAM and ROM)

4) Energy efficiency

5) Stability (→ testability per design, test-driven design)

6) Performance

RIOT Preliminary Network Stack Design – 05.02.2015 5

Architecture

RIOT Preliminary Network Stack Design – 05.02.2015 6

General Concepts
● Data and headers are stored in a central packet buffer
● Data is passed around the network stack by passing around pointers to elements in

this buffer

● Passing data up:
● We always pass the complete packet (including all headers)

● Passing data down:
● A module adds the header for the receiveing module before passing it on

RIOT Preliminary Network Stack Design – 05.02.2015 7

Packet Buffer - Concept
● Goal:

● Decrease size of .bss section / stack usage of network threads
● Minimalize data movement between the layers
● Minimalize data movement inside the buffer
● Make overall used buffer size configurable at central location

● Concept:
● Centralized buffer (either static or dynamic, user's choice)
● Common API for allocation in static buffer array or dynamic memory

management
● Packets are list of headers and payloads
● Basic garbage collection (users)

RIOT Preliminary Network Stack Design – 05.02.2015 8

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 9

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 10

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 11

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 12

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 13

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 14

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 15

Packet Buffer - Concept

RIOT Preliminary Network Stack Design – 05.02.2015 16

Packet Buffer - API
● Packet snip: pktsnip_t

● next: pktsnip_t * // Next packet snip in packet
● data: void * // pointer to data in buffer
● size: size_t // Size of the data in buffer
● type: Integer // Number identifying protocol type of data
● users: Integer // Number of threads currently accessing packet snip

RIOT Preliminary Network Stack Design – 05.02.2015 17

Packet Buffer - API
● Operations:
- pktsnip_t *pktbuf_add(pktsnip_t *next, void *data, size_t size, netprot_t type)

- allocates new packet in packet buffer
- If size == 0: just return resulting pktsnip_t
- If size != 0 and data == NULL and next == NULL: “malloc“ for result->data
- If data != NULL and not in packet buffer: data will be copied into packet buffer
- If data != NULL and in packet buffer and next != NULL and next->data ==

data: Header marked in data of next
- next->data += size

- void pktbuf_hold(pktsnip_t *pkt, uint8_t inc): Increment pkt->users atomically
- void pktbuf_release(pktsnip_t *pkt):

- Decrement pkt->users atomically and remove from pktbuf if pkt->users == 0
- pktsnip_t *pktbuf_start_write(pktsnip_t *pkt):

- Announce write operation
- Duplicates packet in case of pkt->users > 1

RIOT Preliminary Network Stack Design – 05.02.2015 18

Netreg
● Netreg is a global registry that connects the network stack modules based on their

PIDs
● Netreg also keeps callback pointers for creating headers
● Number of interfaces and available protocols are set at compile time

● Example:
● IP parses a packet and wants to hand it over to UDP
● IP ask the netreg for all PIDs that are interested in UDP packets
● IP sends the packet (pktsnip_t ptr) to each of these PIDs

RIOT Preliminary Network Stack Design – 05.02.2015 19

Netreg: API
● netreg_register(netproto_t protocol, kernel_pid_t pid, create_header_cb)
● netreg_unregister(netproto_t protocol, kernel_pid_t pid)
● netreg_lookup(netreg_entry_t *entry, netproto_t protocol) : kernel_pid_t
● netreg_getnext(netreg_entry_t *entry) : kernel_pid_t

● … TBD

RIOT Preliminary Network Stack Design – 05.02.2015 20

Netreg: Open for discussion

Is there a better way to connect network stack module?

RIOT Preliminary Network Stack Design – 05.02.2015 21

Netdev
● Unified interface between device deriver and MAC layer

→ inter-link-layer interface
● Allows for exchangable MAC layers and device drivers

RIOT Preliminary Network Stack Design – 05.02.2015 22

Netdev: API
● netdev_t:
- driver: netdev_driver_t * // contains the driver's function interface
- event_cb: netdev_event_cb_t // called by the driver to inform MAC layer
- mac_pid: kernel_pid_t // the MAC layers PID (the driver's thread context)

● netdev_event_cb_t
- event_cb(netdev_event_t type, void *arg) : void

● netdev_driver_t:
- send_data(netdev_t *dev, pktsnip_t *pkt) : int
- add_event_callback(netdev_t *dev, netdev_event_cb_t cb) : int
- rem_event_callback(netdev_t *dev, netdev_event_cb_t cb) : int
- get_option(netdev_t *dev, uint16_t scope, void *value, size_t value_len) : int
- set_option(netdev_t *dev, uint16_t scope, void *value, size_t value_len) : int
- isr_event(netdev_t *dev, uint16_t event_type) : void

RIOT Preliminary Network Stack Design – 05.02.2015 23

Netdev: Device Descriptor
typedef struct {

 /* netdev interface */

 netdev_driver_t const * driver;

 netdev_event_cb_t event_cb;

 kernel_pid_t mac_pid;

 /* driver specific configuration */

 uint8_t rx_buf_next; /**< pointer to free RX buffer */

 volatile uint8_t state; /**< the current state of the device */

 uint8_t old_state; /**< saves the old state before sending

 uint16_t own_addr; /**< configured 16-bit RX address */

 uint16_t options; /**< bitfiels to save run-time options */

 nrf51prop_packet_t tx_buf; /**< transmission buffer */

 nrf51prop_packet_t rx_buf[2]; /**< double buffered RX buffer */

 /* this would also include peripheral configuration (SPI, GPIO_INT, CS...) */

} nrf51prop_t;

RIOT Preliminary Network Stack Design – 05.02.2015 24

Netdev: Operating modes

Different operating modes can be mapped onto this netdev:

● Promiscuous Mode:
● set_option(dev, NETCONF_OPT_PROMISCUOUSMODE, 1)

● Preloading:
● set_option(dev, NETCONF_OPT_PRELOADING, 1)
● Sending data:

● send_data(dev, pkt) ←this will preload the data (but not send)
● set_option(dev, NETCONF_OPT_STATE, NETCONF_STATE_TX)

RIOT Preliminary Network Stack Design – 05.02.2015 25

Netapi - Concept
● Utilize IPC for sending/receiving of packets between layers
● Utilize IPC for option setting

RIOT Preliminary Network Stack Design – 05.02.2015 26

Netapi - API
● 5 message types:

● Send: msg.content.ptr on pktsnip_t of sending protocol, used with msg_send
● Receive: msg.content.ptr on pktsnip_t of receiving protocol, used with msg_send
● Get option: msg.content.ptr on netapi_opt_t; used with msg_send_receive
● Set option: msg.content.ptr on netapi_opt_t; used with msg_send_receive
● Acknowledgement: msg.content.value on result of get option or set option

operation

● netapi_opt_t:
● Type: Integer // type of option. E.g. address, channel, etc
● Param: Integer // optional parameter to identify possible internal interface/port
● Value: void*
● Size: size_t // sizeof(typeof(value))

RIOT Preliminary Network Stack Design – 05.02.2015 27

Use Cases: Netapi

RIOT Preliminary Network Stack Design – 05.02.2015 28

Use Cases: Netapi

RIOT Preliminary Network Stack Design – 05.02.2015 29

Use Cases: Receiving UDP packet

Link Layer:
- Get message from interrupt
- pktbuf: allocate generic link layer header
- pktbuf: allocate space for data
- Set generik link layer header
- Copy payload from network device into pktbuf
- Get PIDs of interested modules from netreg

- i.e. fixed by driver protocol as 6LoWPAN or by type as in Ethernet
- Pass pktsnip pointer up the stack (to IPv6 in this example)

RIOT Preliminary Network Stack Design – 05.02.2015 30

Use Cases: Receiving UDP packet (cont)

IPv6:
- Get pointer to IPv6 header data

- Found in the received pktsnip pointers next field
- Check if header is really IPv6 (e.g. by looking at the version field)
- Mark header as IPv6 or disregart packet
- Read IP destination address
- If address is me:

- Read next header field
- Get PID of target from netreg
- Pass packet on (UDP in this example)

- Else if router:
- As Forwarding table for next hop
- Send packet to next hop

- Else:
- Drop packet

RIOT Preliminary Network Stack Design – 05.02.2015 31

Use Cases: Receiving UDP packet (cont)

UDP:
- Get pointer to UDP data
- Separate UDP header any payload
- Read destination PORT
- Lookup if socket is bound to this PORT
- Lookup PID for this socket
- Send Payload to socket

Socket:
- Get pointer to Payload data
- Copy payload data into application buffer
- Release packet

RIOT Preliminary Network Stack Design – 05.02.2015 32

Open Topics
● ICMPv6
● Option Handling

● IPv6 Extensions
● NDP / ARP + Options

● FIB
● Routing
● Error Handling

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

