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Motivation
● Problems with the current implementation:

● Too big (buffers everywhere, multiple reimplementations of the same stuff)
● Too inconsistant (every protocol has its own set of APIs)
● Too monolithic

● originally designed for just 6LoWPAN over cc110x
● IEEE 802.15.4 support patched in with advent of at85rf231/cc2420 support
● every new device type requires heavy patching in several layers
● IPv6 without 6LoWPAN currently impossible

● Transceiver API does not scale 
● (for every new device new #ifdef branch  >1000 loc for simple tasks)⇒

● Context (thread) of function calls not always clear 
● (ipv6_send_data() called from RPL, TCP/UDP, and Ipv6 thread itself)
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Desing Principles

1) Modularity and extensibilty

2) Slim and well-defined interfaces

3) Memory efficiency (RAM and ROM)

4) Energy efficiency

5) Stability (→ testability per design, test-driven design)

6) Performance
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Architecture
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General Concepts
● Data and headers are stored in a central packet buffer
● Data is passed around the network stack by passing around pointers to elements in 

this buffer

● Passing data up:
● We always pass the complete packet (including all headers)

● Passing data down:
● A module adds the header for the receiveing module before passing it on
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Packet Buffer - Concept
● Goal:

● Decrease size of .bss section / stack usage of network threads
● Minimalize data movement between the layers
● Minimalize data movement inside the buffer
● Make overall used buffer size configurable at central location

● Concept:
● Centralized buffer (either static or dynamic, user's choice)
● Common API for allocation in static buffer array or dynamic memory 

management
● Packets are list of headers and payloads
● Basic garbage collection (users)
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - Concept
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Packet Buffer - API
● Packet snip: pktsnip_t

● next: pktsnip_t * // Next packet snip in packet
● data: void * // pointer to data in buffer
● size: size_t // Size of the data in buffer
● type: Integer // Number identifying protocol type of data
● users: Integer // Number of threads currently accessing packet snip
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Packet Buffer - API
● Operations:
- pktsnip_t *pktbuf_add(pktsnip_t *next, void *data, size_t size, netprot_t type)

- allocates new packet in packet buffer
- If size == 0: just return resulting pktsnip_t
- If size != 0 and data == NULL and next == NULL: “malloc“ for result->data
- If data != NULL and not in packet buffer: data will be copied into packet buffer
- If data != NULL and in packet buffer and next != NULL and next->data == 

data: Header marked in data of next
- next->data += size

- void pktbuf_hold(pktsnip_t *pkt, uint8_t inc): Increment pkt->users atomically
- void pktbuf_release(pktsnip_t *pkt):

- Decrement pkt->users atomically and remove from pktbuf if pkt->users == 0
- pktsnip_t *pktbuf_start_write(pktsnip_t *pkt):

- Announce write operation
- Duplicates packet in case of pkt->users > 1
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Netreg
● Netreg is a global registry that connects the network stack modules based on their 

PIDs
● Netreg also keeps callback pointers for creating headers
● Number of interfaces and available protocols are set at compile time

● Example:
● IP parses a packet and wants to hand it over to UDP
● IP ask the netreg for all PIDs that are interested in UDP packets
● IP sends the packet (pktsnip_t ptr) to each of these PIDs
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Netreg: API
● netreg_register(netproto_t protocol, kernel_pid_t pid, create_header_cb)
● netreg_unregister(netproto_t protocol, kernel_pid_t pid)
● netreg_lookup(netreg_entry_t *entry, netproto_t protocol) : kernel_pid_t
● netreg_getnext(netreg_entry_t *entry) : kernel_pid_t

● … TBD
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Netreg: Open for discussion

Is there a better way to connect network stack module?
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Netdev
● Unified interface between device deriver and MAC layer 

→ inter-link-layer interface
● Allows for exchangable MAC layers and device drivers
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Netdev: API
● netdev_t:
- driver: netdev_driver_t * // contains the driver's function interface
- event_cb: netdev_event_cb_t // called by the driver to inform MAC layer 
- mac_pid: kernel_pid_t // the MAC layers PID (the driver's thread context)

● netdev_event_cb_t
- event_cb(netdev_event_t type, void *arg) : void

● netdev_driver_t:
- send_data(netdev_t *dev, pktsnip_t *pkt) : int
- add_event_callback(netdev_t *dev, netdev_event_cb_t cb) : int
- rem_event_callback(netdev_t *dev, netdev_event_cb_t cb) : int
- get_option(netdev_t *dev, uint16_t scope, void *value, size_t value_len) : int
- set_option(netdev_t *dev, uint16_t scope, void *value, size_t value_len) : int
- isr_event(netdev_t *dev, uint16_t event_type) : void
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Netdev: Device Descriptor
typedef struct {

    /* netdev interface */

    netdev_driver_t const * driver;    

    netdev_event_cb_t event_cb;        

    kernel_pid_t mac_pid;              

    /* driver specific configuration */

    uint8_t rx_buf_next;                /**< pointer to free RX buffer */

    volatile uint8_t state;             /**< the current state of the device */

    uint8_t old_state;                  /**< saves the old state before sending 

    uint16_t own_addr;                  /**< configured 16-bit RX address */

    uint16_t options;                   /**< bitfiels to save run-time options */

    nrf51prop_packet_t tx_buf;          /**< transmission buffer */

    nrf51prop_packet_t rx_buf[2];       /**< double buffered RX buffer */

    /* this would also include peripheral configuration (SPI, GPIO_INT, CS...) */

} nrf51prop_t;
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Netdev: Operating modes

Different operating modes can be mapped onto this netdev:

● Promiscuous Mode:
● set_option(dev, NETCONF_OPT_PROMISCUOUSMODE, 1)

● Preloading:
● set_option(dev, NETCONF_OPT_PRELOADING, 1)
● Sending data:

● send_data(dev, pkt) ←this will preload the data (but not send)
● set_option(dev, NETCONF_OPT_STATE, NETCONF_STATE_TX)
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Netapi - Concept
● Utilize IPC for sending/receiving of packets between layers
● Utilize IPC for option setting
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Netapi - API
● 5 message types:

● Send: msg.content.ptr on pktsnip_t of sending protocol, used with msg_send
● Receive: msg.content.ptr on pktsnip_t of receiving protocol, used with msg_send
● Get option: msg.content.ptr on netapi_opt_t; used with msg_send_receive
● Set option: msg.content.ptr on netapi_opt_t; used with msg_send_receive
● Acknowledgement: msg.content.value on result of get option or set option 

operation

● netapi_opt_t:
● Type: Integer // type of option. E.g. address, channel, etc
● Param: Integer // optional parameter to identify possible internal interface/port
● Value: void*
● Size: size_t // sizeof(typeof(value))



RIOT Preliminary Network Stack Design – 05.02.2015 27

Use Cases: Netapi



RIOT Preliminary Network Stack Design – 05.02.2015 28

Use Cases: Netapi
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Use Cases: Receiving UDP packet

Link Layer:
- Get message from interrupt
- pktbuf: allocate generic link layer header
- pktbuf: allocate space for data
- Set generik link layer header
- Copy payload from network device into pktbuf
- Get PIDs of interested modules from netreg 

- i.e. fixed by driver protocol as 6LoWPAN or by type as in Ethernet
- Pass pktsnip pointer up the stack (to IPv6 in this example)
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Use Cases: Receiving UDP packet (cont)

IPv6:
- Get pointer to IPv6 header data 

- Found in the received pktsnip pointers next field
- Check if header is really IPv6 (e.g. by looking at the version field)
- Mark header as IPv6 or disregart packet
- Read IP destination address
- If address is me:

- Read next header field
- Get PID of target from netreg
- Pass packet on (UDP in this example)

- Else if router:
- As Forwarding table for next hop
- Send packet to next hop

- Else:
- Drop packet
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Use Cases: Receiving UDP packet (cont)

UDP:
- Get pointer to UDP data
- Separate UDP header any payload
- Read destination PORT
- Lookup if socket is bound to this PORT
- Lookup PID for this socket
- Send Payload to socket

Socket:
- Get pointer to Payload data
- Copy payload data into application buffer
- Release packet
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Open Topics
● ICMPv6
● Option Handling

● IPv6 Extensions
● NDP / ARP + Options

● FIB
● Routing
● Error Handling
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