
Network stack refactoring and its model

Martine Lenders

FU Berlin
Institut für Informatik

RIOT

January 6, 2015



Motivation

Problems with the old network stack
▶ Too big (buffers everywhere, multiple reimplementations of same

stuff)
▶ Too inconsistant (every protocol has its own set of APIs)
▶ Toomonolithic

▶ originally designed for just 6LoWPAN over cc110x
▶ IEEE 802.15.4 support patched in with advent of at85rf231/cc2420

support
▶ every new device type requires heavy patching
▶ IPv6 without 6LoWPAN currently impossible

▶ Transceiver API does not scale (for every new device new #ifdef
branch)

▶ Context (thread) of functions calls not always clear



Basic idea



Prelimanary reasoning

▶ Use RIOT’s scheduler to priorities network layers⇒ netapi as IPC API
▶ Device and MAC layer need low-latency communication (e.g. IEEE

802.15.4)⇒MAC and device driver can’t communicate via netapi⇒
netdev (more or less netapi in function-based)

▶ Central packet buffer⇒ pktbuf (get thread-safe packet buffers from
central array)

▶ Reduce numbers of memory movings⇒ protocol headers as linked
list in pktbuf



Class diagram: pktbuf



Class diagram: netdev



Class diagram: netapi



Sequence: Getting receive context out of ISR



Preliminary status report (aka PRs exists or already in master)

▶ pktbuf✓
▶ netdev✓ (ports exists for all devices in master)
▶ netapi

▶ MAC (✓) (nomac, as simple forwarding MAC layer, more complex MAC
adaptions welcome)

▶ 6LoWPAN✓
▶ IPv6 (nearly done, though on halt due to pktbuf changes)
▶ Transport layer (TCP/UDP) (not porting efforts as of yet)


